
Training students to choose
their agile practices and tools

Paolo Ciancarini
Dept. of Computer Science

University of Bologna
Bologna, Italy

paolo.ciancarini@unibo.it

Andrea Loretti
Dept. of Computer Science

University of Bologna
Bologna, Italy

andrea.loretti2@studio.unibo.it

Marcello Missiroli
Dept. of Computer Science

University of Bologna
Bologna, Italy

marcello.missiroli@unibo.it

Andrea Schinoppi
Dept. of Computer Science

University of Bologna
Bologna, Italy

andrea.schinoppi@studio.unibo.it

Abstract—We present our experiences in training computer
science students in agile software development over two academic
years. The product to build was a specialized Twitter client,
with instructors refining its requirements throughout the course.
We observed over a hundred students divided into teams of
approximately five members each. To support agile collaboration
and self-tracking, we provided students with a comprehensive
software development environment consisting solely of open-
source tools. Before commencing their cooperation, we encour-
aged students to engage in team-building activities to foster better
mutual understanding. We adopted the Essence approach to
instill an agile mindset and facilitated retrospectives tailored to
the students’ needs. Key findings include the effective use of
the adaptable Scrum framework with support from the Essence
approach to agile teamwork. Although the constraint of using
exclusively on-premises open-source software tools posed some
challenges for the students, all produced data and documents
were accessible for inspection by the instructors. Additionally,
the utilization of a product quality model and team maturity
model proved valuable for evaluating and comparing the teams.
Notably, all teams successfully completed their tasks within the
designated timeframe.

Index Terms—agile, teamwork, Essence, agile tools

I. INTRODUCTION

Agile methodologies are widely used in the software industry,
where they are applied using a variety of processes and best
practices. Agile methods and practices can also help students
develop valuable soft skills such as communication, teamwork,
and adaptability. Practicing agile, they should learn how to
work effectively with a product owner and other developers,
respond to changing requirements, and aiming at continuously
improving their work processes. Although there are several
agile methods, two are especially outstanding: Scrum [21] and
Extreme Programming [3]. The former is the most popular, be-
cause it enforces the major Agile principles of iterative, value-
based, incremental delivery by frequently gathering customer
feedback and embracing requirements change. The latter is
also well known, as it introduced a set of agile best practices
that can be easily be applied and exploited by students,
such as pair programming, the collective property of code,
requirements as user stories, etc. An important value fostered
by the agile vision is that the process is less important than
individuals and interactions. We interpret this value suggesting
the students that they can choose the best practices to use

during the development. Planning and implementing their own
Agile software process can also help students develop a sense
of ownership and responsibility over their work. They will
have a better understanding of what is expected of them, and
they will be more motivated to achieve their goals. Overall,
learning how to plan their own Agile software process and
pick Agile best practices can be a valuable learning experience
for students, preparing them for successful careers in software
development and helping them develop important skills for
any profession.

In this paper we report on our experiences with training to
agile vision and selection of agile best practices our Computer
science students in a software engineering class. We adopt the
Essence approach [12] that is based on a visual language able
to capture combinations of agile practices and the state of their
enactment inside a development process. Essence is formally
an international standard issued by OMG [18].

Learning how to plan their own Agile software process and
choose which best practices apply can help students become
more effective and efficient in their software development
work. They will be able to break down complex projects
into smaller, more manageable tasks and work collaboratively
with their team members to complete these tasks in a timely
manner. We use a team building game to help the students to
select their role in a Scrum-like team. Then we ask them to
use a number of state-of-the art open source tools, like Taiga,
GitLab, and SonarQube, to help them during the development
and to collect data useful for the analysis we will report in this
paper. We also suggest them to follow the Essence approach to
process enactment and retrospective analysis. Concerning the
evaluation of this experience, we have developed a maturity
model to analyze how student teams perform their teamwork.
We observed more than one hundred students divided in teams
averaging five members each.

Specifically, we observed 136 students (57 in 2021 and 79
in 2022) divided in 27 teams (11 in 2021 and 16 in 2022)
with an average of 5 components each (three teams had six
components and two teams had four).

The project consisted in creating a Twitter client enriched with



a dashboard with several filtering and visual analytics features.

The teamwork was organized following a Scrum-like ap-
proach: each team had to work for at least three 3-week-sprints
using CAS services and then write a final report to summarize
the development process. Each student had then to complete
an individual questionnaire to evaluate the experience.

We collected several data. The main data sources were the
final reports, the individual questionnaires and, within the
CAS environment, Gitlab, Taiga, and SonarQube. The final
reports were a fundamental source of data since, in addition
to containing all mandatory information, most teams included
additional elements regarding their own process. Tools were
shared with the instructors. Gitlab was used to analyze the
structure of the teams’ repositories and obtain data regarding
the frequency of commits and the tests performed. Taiga
was used by the teams to manage their sprints and their
retrospectives (conducted using Essence cards); the instructors,
as Product Owners, could see the progresses on the product
and its documentation. SonarQube was used for extracting
product quality data and technical debt data.

This paper has the following structure: Section II presents
some related works; Section III overviews the approach we fol-
lowed, describing the preliminary activities for team building,
the product to be built by the teams, the process enacted, and
the open source tools which were used. Section IV presents
the results of the analysis of the data we collected; Section
V discusses these results; finally, Section VI presents our
conclusions and the work we are planning now.

II. RELATED WORKS

There are several papers concerning teaching agile teamwork
and development in a university course. For instance, in [9],
the authors describe their experiences teaching agile software
development to computer science students and provide some
recommendations for instructors; in [15] we found the de-
scription of a course on agile methodologies taught to software
engineering students analyzing their personalities and attitudes
to teamwork; and in [17] there is a discussion of how the
use of collaborative practices needs some maturity by the stu-
dents. A paper exploiting Essence during an academic course
project work is [13]; this paper discusses the difficulties of
adopting Essence in the context of an undergraduate software
engineering course. We searched for papers concerning team
building in a university context: we found [14], which suggests
an approach on how to integrate team building into university
courses including agile teamwork.

We also have devoted some effort to look for papers exposing
experiences on teaching agile using open source tools. The
match between agile and open source seems natural, how-
ever we have found only the paper [23], which reports an
experience using tools quite different from those we used,
in particular they used Redmine for project management and
bugzilla as issue tracker.

Documentation of process choices, tools selections, and their
rationale is an important factor in software development
projects in order to support product quality and future mainte-
nance. While several research publications address this topic,
systematic approaches and tools are rarely found in practice,
and not well covered in software engineering education. Lack
of suitable process documentation is especially an issue in
agile software development, where processes and tools are
often seen as less important than working products [20].

We found some experiences of using a Scrum-like approach
adaptable by the students, see for instance [19; 2].

Concerning the evaluation of the product, our work has been
inspired by the quality model described in the article by Hoegl
and Gemuenden [11], and further developed by Lindsjørn et
al. [16].

The maturity model for agile teamwork which inspired us to
evaluate the process was proposed by Yin et al.[24], based
on the one created by Chetankumar et al.[4]. Gren et al. have
also discussed the concept of teamwork maturity in agile teams
[10], and influenced our model as well.

III. METHOD

In this section we will present our research method. First,
before the course we built and configured an experimental
open source environment, inspired by Jira, to be used by the
student teams and also useful to collect process data.

We asked the teams to start their project work with a team
building activity, using the serious game Scrumble1, aiming at
improving the reciprocal knowledge and training themselves
with a simulated form of Scrum cooperation. Fig.1 shows a
selfie by a team after having played the game.

We produced also an online version of the game, so that the
teams could play remotely during the pandemic.

1http://scrumble.pyxis-tech.com/

Figure 1. A team at the end of a game of Scrumble

http://scrumble.pyxis-tech.com/


After the teams completed and self-evaluated their team build-
ing we described them the product to build: a Twitter client
with several capabilities for visual analytics, to be applied
to specific situations: eg. an earthquake, to signal emergency
situations, or a travel with some friends, to signal the positions
of the participants during the visit to some city or area. We
also asked the teams to follow a Scrum-like process, that
could be adapted to their needs using the Essence approach.
Essence allows to select and organize specific practices (eg.
pair programming or retrospective with some special activities)
still keeping Scrum as a reference framework. At the end of
the project the teams had to produce a demo and a process
report. The exam consisted in a product demo and a final
retrospective conducted together with the instructors.

A. Product specifications

This section briefly illustrates the product specifications. The
goal of the project was to create an application capable
of gathering and organising tweets. The collection could be
historical (e.g. tweets from last week) or gathered as a real
time stream.

The application had to allow tweets visualization and consult-
ing and, under certain conditions, activate specific procedures.
The requirements for a Minimal Value Product were:

• Use a keyword to collect Tweets from the past;
• Collect geolocalized tweets;
• Given a geographical area, show tweets posted in that

area;
• Gather tweets referring to a some Point of Interest;
• Given a specific keyword or hashtag, show related tweets;
• Show geolocalized tweets of a specific person, and follow

its movements;
• (sentiment analysis) Analyze the sentiment of a series of

tweets about a given topic;.

The tweets collected and classified had to be aggregated in
an interactive dashboard, possibly showing coordinated views
presenting different data details (e.g. locations on a map),
a term cloud of the most used words, a bar chart with the
number of tweets per unit of time, a pie chart with positive
and negatives sentiments, plus other ways to aggregate data.

B. Process description

This section describes the software development process
adopted by the teams during their work. We split the whole
process in three main phases: preparatory phase, execution
phase, and conclusive phase.
1) Preparatory phase: During this first phase teams were
formed using Trello: the students created personal cards on
the platform by inserting their nickname, a brief description
of their skills and their programming preferences (for example:
front-end development, back-end development, UX expert, or
testing). An attempt to form teams that, while covering all
the necessary roles during development, reflected as much

as possible the skills and preferences of the individual com-
ponents was made. Trello was used because was enough
popular among students, and could be accessed using their
smartphones.

After the team forming, the teams autonomously assigned the
two roles of operational Product Owner (oPO) and Scrum
Master (SM), while other members made up the developer
team. The assignment of roles is a critical team building
activity: to decide the roles, the teams were requested to play
a game of Scrumble. This is a serious game in which a Scrum
process is simulated, including also a concept of managing
technical debt. A game of Scrumble can be played either in
presence or online [5]. During each round of the game, the
players took on different roles, such as Product Owner, Scrum
Master, and Development Team members. The Product Owner
was responsible for introducing the user stories and prioritize
the work, while the Scrum Master was the coach explaining
the Scrum process and ensuring that the team is following the
rules. The retrospective performed at the end the game was
based on a GQM evaluation which helped the team to choose
which people could cover which roles in the real project.

The role of the operating PO inside the team proved to be
useful to discuss with the real Product Owners (the instructors)
variants of the product to build , possibly with enhancements
introduced by the teams themselves.. The addition of the
“operational” specification to the PO indicates that it is not
an external member of the group, but a student with a double
role: Product Owner and team support (and in most teams also
developer). A similar observation can be made for the Scrum
Masters who, in most cases, have not limited themselves only
to providing support to their team but they have additionally
taken on the role of developer.
2) Execution phase: Once teams were formed and roles
assigned, the real code-development phase began: every team
worked for at least three sprints lasting three weeks each.

Teams used Taiga to draw up a product backlog where each
requirement was transformed into user stories (US) and
tasks assigned to developers, whose code was then pushed
on Gitlab and had to pass SonarQube’s quality checks.
User stories also had several acceptance criteria, including
mandatory tests and an estimated difficulty level expressed in
story points.
When a developer completed a US, its amount of story points
was subtracted from the total allowing Taiga to create a chart
to track progress.
At the beginning of the third sprint, POs created two extra
user stories to be implemented in order to simulate a real,
changing work environment.
Also, during this phase teams met in periodic reunions to
discuss their advancement and to let everyone inform others
on what they planned to work on during the remaining part
of the sprint. At the end of every sprint, teams had to meet
POs to present a working demo of their projects at the actual



state of art and a retrospective made with Essence cards2.

3) Final phase: When the team felt that the product was
complete enough, they had to write a final report to accurately
summarise their process and make a demonstrative video of
their product. Eventually, every student individually answered
to a questionnaire about their perception of the work. The
final evaluation was assigned by POs after a meeting similar
to a sprint review, including a demo and a final retrospective
including a presentation of the final report.

C. The agile open source environment

We gathered and analyzed data produced by students dur-
ing the development of the project work for the Software
Engineering course. The teams used the services offered by
the Compositional Agile System (CAS) [7]. This is an open
source, open-ended development environment conceived in
order to adopt an Agile approach based on a process model in-
spired by Scrum introduced for critical systems development.
The implementation of CAS aims to provide an autonomous
environment which can be deployed on a private server or a
hybrid cloud, and extended with additional open source tools,
while keeping complete control over the data and source code
stored within. The CAS structure is composed of a server,
which is a basic set of shared services, and some clients, which
are used by developers to interact with the services, as shown
in Fig.2.

A CAS Client is installed by the developer along with an IDE
of their choice, among the supported ones, and consists of two
distinct parts:

• A plug-in for the chosen IDE to monitor the development
and record the metrics which will be sent to the logger
service hosted on the CAS server.

• A Browser capable of interfacing with the logger dash-
board on the server in order to retrieve and show all the
metrics with graphs.

1) CAS Server: All the CAS services are open source and
each one of them has a utility in contributing to different
activities in the agile development process
2) CAS-Logger and CAS-Dashboard: CAS-Loggeris a self
tracking service that allows each user to view personal statis-
tics generated by the actions performed on an IDE, equipped
with a plugin that connects to a CAS service repository.
To be able to consult the statistics in detail, users have to log
into the CAS platform.

CAS-Dashboard is a web app that aggregates data from all
the CAS services used either by a single developer or by
the team. Each section of the dashboard interacts with the
associated service through the APIs made available by the
service itself.
The extrapolated data are manipulated to return tables or

2https://practicelibrary.ivarjacobson.com/start/

graphs, like those in Figure 3.

The loggers track and record five different types of measure-
ments, either for a single developer or for the whole team:

• Lines of code: the plugins determine, through the use of
diff libraries in Java and JavaScript (ECMAScript), the
number of lines added, modified and deleted every time
a file is saved.

• Comments: with the same libraries for lines control,
using pattern matching it is determined how many com-
ments have been added or removed.

• Lines of test: the same procedure is used to identify the
lines relating to testing.

• Refactoring: each editor emits signals for the events
generated through the use of the IDE itself.
The plugins capture metrics by determining duration and
type of each individual operation and ignoring events that
are not considered significant.

• Session: an authenticated user also generates activity
metrics that include hardware details of the machine they
are working on, in particular the IP and MAC addresses,
which will be associated with the type of activity being
carried out.

D. Data gathering and elaboration

This section describes the data collection process.
The analyzed data come from the tools present in the CAS
environment, final reports, and individual questionnaires.

In particular, data on productivity, code quality and workload
organisation of the teams were collected from the CAS envi-
ronment, information on the process followed by each team
was gathered from the final reports and, finally, the students’
perceptions of various aspects of the project were collected
from individual questionnaires.

The data was aggregated and analyzed using an electronic
spreadsheet: some interventions were necessary to integrate
or correct some answers which, depending on the case, had
been omitted or entered incorrectly and would have been
unusable for the analysis.

1) Data obtained from the CAS environment: The main data
sources within the CAS environment were Gitlab, Taiga and
SonarQube. Gitlab was used as versioning system. Taiga was
used to share the product backlog and to visualize the progress
of every sprint. The teams used Taiga to split user stories into
tasks, the relative estimates assigned based on the perceived
difficulty (expressed in story points). Taiga updates the burn-
down chart sprint by sprint. Students learned to appreciate
the power of this representation of effort as the instructors
monitored their progress.

There are other two tools in CAS, namely Mattermost for team
communication and Jenkins for testing. Some teams, not all,
used these tools as well.

https://practicelibrary.ivarjacobson.com/start/


Figure 2. Structure of CAS services, which are all dockerized

In the end, data related to the number of lines of code (LoC),
comments written and the general quality of the code were
obtained from SonarQube in terms of scores for: reliability,
security, maintainability, number of tests performed and dupli-
cate code blocks. An example of SonarQube evaluation screen
is shown in Figure 4.
2) Data obtained from the final reports: The final reports were
a vital source of data as, in addition to containing several
mandatory information, such as sprints descriptions and retro-
spectives, most teams included additional elements regarding
their process. These elements were used to better understand
some answers contained in the individual questionnaire or to
better interpret certain data.

The requirements for the final reports included:

1) Product description, including scope, backlog and UML

Figure 3. CAS-Dashboard

diagrams for use cases and architecture;
2) Description of each sprint:

a) Sprint goal, sprint backlog, and definition of done,
b) Implemented tests,
c) Sprint burndown,
d) SonarQube evaluation of the product increment,
e) Sprint retrospective performed using Essence

cards.
3) Process description:

a) team forming with Trello and team building results
of a Scrumble game,

Figure 4. Example of SonarQube evaluation of a release of the product at
the end of a sprint: the green area says that the quality gate was passed, even
if the test coverage is only 60.8%, and the remaining technical debt is 1 hour



b) Total logger and Gitinspector data,
c) Final retrospective.

3) Data obtained from individual questionnaires: Individual
questionnaires were the main source of the analyzed data.
The individual final questionnaire was submitted to all the
students a few days before the final discussion with the POs
via Google Forms. The 37 questions are described in Table I.

Table I
DESCRIPTION OF THE 37 QUESTIONS OF THE INDIVIDUAL

QUESTIONNAIRE

Question number Answer type
1 Team number
2 personal ID number

3a, 3b PO or SM role
4 Personal IDE used

5a, 5b Personal estimation of produced lines of code
6 Agile practices used

7, 8 Personal retrospective
9a, 9b, 9c, 9d, 9e, 9f Anonymous evaluation of members contribution (%)

Da 10 a 25 e da 31 a 37 Evaluation of internal team interactions
26 , 27 Product and process self evaluation

28, 29, 30 Estimation of programming or team support hours

E. Teamwork quality model

Once the data was collected and the necessary modifications
made, it was possible to apply a teamwork quality model.
We have chosen a model developed and described by Martin
Hoegl and Hans Georg Gemuenden [11], based on the analysis
of internal team interactions, performance analysis and team
satisfaction analysis in relation to the final product. This model
was later applied to Agile development teams by Dingsør et al.
[16]. The model relates to the team performance, the quality
of teamwork, measured through the analysis of interactions
within the team, and the personal success of team members
to return an estimate of good quality.

In Table II, quality model parameters and performance data
sources are listed by categories. Most of the data are taken
from the answers students gave to their individual final ques-
tionnaires.

Table II
TEAMWORK QUALITY MODEL PARAMETERS AND DATA SOURCES

Parameter Data sources
Performance analysis

Productivity analysis Questions 5a, 5b, 28, 29 and 30
Final product quality SonarQube analysis and final project grade

Internal interactions analysis
Communication Questions 10, 11, 12, 13, 14, 28 and 29

Coordination Questions 15 and 16
Effort prioritization Question 20

Mutual support Questions 17, 18 and 19
Cohesion Questions 22 and 23

Effort balance Questions 9 (a, b, c, d, e, f), 21 and 24
Team satisfaction

Team satisfaction Questions 25, 26 and 27

F. Agile maturity model

We present a teamwork maturity model following the one
proposed by Yin [24], which was based on Chetankumar’s
one [4]. We adopted the maturity model as explained in [8].
The model provides five levels of maturity (1 lowest to 5
highest). Some objectives are associated with each level and
a score is assigned for each. The average score for a level is
called the Key Process Area (KPA). The calculation of KPA
is based on a series of questions to be answered with “Yes,”
“No,” “Partially,” or “Not applicable”; each question has been
answered by the authors of this paper after reading the final
reports. The final score is calculated according to Formula 1.

∑
NS + 1

2

∑
NP

t−
∑

NNA
× 100 (1)

where NS represents the number of “Yes” responses, NP

the number of “Partially” responses, t the total number
of questions, and NNA the number of “Not applicable”
responses.

If the KPA score is between 86% and 100%, the maturity level
is considered completely achieved. Lower scores (between
51% and 85% ) indicate sufficient achievement of the maturity
level, partial achievement (up to 16%) or failure (below 15%).
It is not possible to reach a maturity level if the previous one
has not been fully reached.

IV. RESULTS

In this section we will present the results of our analysis of
the data collected from the tools and the final reports written
by the teams.

A. Students’ choices

We are now presenting the results regarding the self organizing
teams. In fact, as stated before, students were free to choose
the tools they desired to carry out the project.
1) IDE and logger: An interesting fact we discovered from
the questionnaires is the usage of IDEs and Loggers: students
used different ones and sometimes more than one as presented
in Table III (IDEs) and Table IV (loggers).

Table III
IDES USAGE BY YEAR

IDE Usage in 2020/2021 Usage in 2021/2022
Atom 0 54

Visual Studio Code 26 22
IntelliJ Idea 20 10

Vim 0 2
Eclipse 5 1
Emacs 0 1



Table IV
LOGGERS USAGE BY YEAR

Logger Usage in 2020/2021 Usage in 2021/2022
Atom logger 0 53

Logger for IntelliJ Idea 0 3
Logger for Eclipse 0 1

WakaTime 11 1
Innometrics 15 0
No logger 21 22

Also some students did not use a logger.
2) Programming languages: The nature of the product re-
quired a mix of languages, in general different for the front-
end and for the back-end. Students chose a main programming
language as shown in Figure 5:

Figure 5. Programming languages used by teams in 2021/2022

From this pie chart it is possible to understand that most of
the teams in 2021/2022 chose to develop a web application,
but some decided to deliver other kinds of applications. The
2020/2021 teams also developed mostly web apps: Javascript
was the language of choice for seven out of eleven teams (37
students), in contrast to the other four who chose Java (20
students).

B. Agile practices

There were several Agile practices to choose, some were
mandatory, but some were freely selected by the students.
Clearly the most reported were the mandatory ones, but several
students added others. Figure 6 presents the results for year
2021/2022.

In year 2020/2021, fewer agile practices were employed. In
particular, sprint planning, mob or pair programming and
retrospectives were adopted by all students, while daily or
weekly scrum only by 25 out of 57.

C. Retrospectives

At the end of each sprint and at the end of the entire
development process, each team was required to create a
retrospective using Essence cards. These cards describe typical
agile development practices. During a retrospective the Scrum
Master first selected some cards, then placed them inside a
table. The table consisted of three columns, on which the cards

Figure 6. Agile practices used by students in 2021/2022. ”Testing” means
automated testing.

were placed according to the team’s self-assessment of the
performance of the activities (good, normal, bad) and three
rows, which represented the priority set for that activity in the
development context (high, medium, low). In addition, there
was a fourth column in which the team could make notes on
the aspects to be improved in the next sprint or that they would
like to improve during the course of the project, again on the
basis of the corresponding priority. Fig. 7 shows a table filled
by a team.

The retrospectives were a way for students to reflect on their
activities, to self-assess themselves and to improve their own
development process as they went along.
Several teams reported in their final reports the improvements
they had achieved in a recently completed sprint thanks to the
retrospective conducted at the end of the previous sprint.
Finally, the students were asked to rate the perceived effec-
tiveness of the retrospectives with essence cards and the result
was 3.75 out of a maximum of 5 (StDev. σ = 0, 98).

Figure 7. Using Essence during a retrospective



Table V
COMPARISON BETWEEN 2021/2022 DATA AND 2020/2021 DATA

2021/2022 2020/2021
Number of teams 16 11
Involved students 79 57

Performance analysis
Avg. error on LoC self-estimate 882 619

Avg. devs LoC 1688 721
Avg. devs working hours 83 55

Avg. SM LoC 1484 806
Avg. SM support hours 32 52

Avg. SM programming hours 91 42
Avg. product quality 90.1% 92.0%

Interactions analysis
Avg. communication quality 74.51% 66.32%

Avg. coordination quality 83.69% 85.61%
Avg. mutual support quality 75.62% 82.60%

Avg. effort prioritization quality 79% 71.80%
Avg. cohesion quality 66% 73.20%

Avg. effort balance quality 85.02% 80.20%
Satisfaction analysis

Avg. satisfaction 82.65% 82.20%

Avg. quality 83% 85.16%

Teamwork maturity analysis
Avg. maturity level 3.18 2.36

Avg. KPA 88.10% 76.67%

D. Teamwork quality and maturity models

We now present the teamwork quality and maturity models’
results.
The data are presented in Table V: the first column indicates
the parameter being considered, the second column the data
for Academic Year 2021/2022, and the third column the data
for Academic Year 2020/2021.

Starting with the first two rows, it is immediately possible to
see that for the year 2021/2022 the sample, both as the number
of teams and the number of students was larger.

Passing to performance analysis, it can also be seen that the
developers in 2021/2022 wrote more lines of code on average
and at a higher rate.

The Scrum Master’s role as developer was maintained: in
both cases the average LoC SMs reported is very close to
the average of the lines reported by developers.

Regarding meeting times, the values are similar. What varies
are the total duration of work: in the case of the 6 ECTS
course the hours reported by students are 29.8% more than
in the 9 ECTS course. It is important to underline that the
productivity data come from students self-estimates and is
thus subject to large approximation, as it is possible to see
in the “average error on LoC self-estimate” row. Turning to
the analysis of team interactions, only minor differences can
be seen in product quality, coordination quality, and average
satisfaction. The overall average quality, calculated from the
average values obtained by each team, also did not change
much. Switching to the maturity model, we have that in the

year 2021/2022 the result is better, but this is partially due to
the new mandatory requirements.

Moreover it is important to clarify that even if the average
KPA is greater then 86%, it does not mean that on average
every team reached such a high (> 3) maturity level. In fact
the average KPA was calculated from every level’s KPA, even
if one team did not reach a specific level.

Finally, we present Figure 8 and Figure 9 to illustrate the
average teamwork quality and maturity for each team during
each year. Comparing the two graphs, we observe that the
second one shows a better maturity, reflecting an improved
clarification of the agile practices used by the students.

Figure 8. Comparing teamwork quality and maturity for teams (2020/2021)

Figure 9. Comparing teamwork quality and maturity for teams (2021/2022)

V. DISCUSSION

First, we checked the projects’ adherence to the 12 agile prin-
ciples3: with the exception of the fourth principle (“Business
people and developers must work together daily throughout the
project”) which was not strictly applied, due to the university
context in which daily meetings were not affordable, all others
were respected.

3https://agilemanifesto.org/iso/en/principles.html

https://agilemanifesto.org/iso/en/principles.html


Following the sixth agile principle (“The most efficient and
effective method of conveying information to and within a
development team is face-to-face conversation”), most of the
meetings took place online because of the restrictions due to
the pandemic. This necessity enhanced not only the usage
of collaborative tools (the students used MS Teams for most
video calls, as it was made available for lectures and they
could use it for their meetings) but also of development tools
like GitLab and SonarQube.

Another important point of discussion concerns the students’
difficulty in estimating their own code production in terms of
lines of code written: in fact, it appears that in both academic
years, lines of code counted by SonarQube and those estimated
by students differ in excess by a significant percentage as
shown in Table V.

Starting from this observation, it is possible to make another
regarding the massive hourly production of lines of code. In
fact, by overestimating the lines of code written and possibly
underestimating the actual working hours, students in both
years achieved very high writing rates.

Another issue concerns Scrum Masters: in fact, those in this
role are not usually asked to write code, but in our context each
SM was first and foremost a computer science student and was
both a support figure and a programmer, so the majority wrote
code as developers.

Turning to the choice of agile practices, it is noticeable that
several students were reluctant to apply practices that were not
strictly compulsory.

Comparing analyses of internal team interactions over the
two years, it is possible to see an improvement in criteria
strictly related to project execution, i.e. organisation of ef-
fort and work-related communications, and a deterioration in
those strictly related to social relations between developers,
especially cohesion.

Finally, the correlation between the results of teamwork quality
and maturity models was verified for both years.
The Pearson correlation ρ index was used for this purpose: it
returns a value between -1 and 1, where -1 represents inverse
linear correlation and 1 direct linear correlation.
In the year 2020/21 was obtained ρ = 0, 8, while in 2021/22
it was ρ = 0, 436.
This difference is probably due to the fact that there were
more compulsory requirements in the project guidelines for
the year 2021/2022. The compulsory requirements influenced
the assessments in the two models, especially the maturity
model.

VI. CONCLUSIONS AND FUTURE WORK

We have presented the results of a two-year long observational
study which consisted of training several student teams to use
an open source environment for agile developments in order
to develop a Twitter client with several capabilities for visual
analytics. Teams were asked to follow a Scrum-like process

and produce a demo and a process report. Teams were also
requested to use during their retrospectives a choice of Essence
cards, and perform some activities to analyze how good was
their process, to be recorded on their final reports.

Several product and process data were gathered from the tools
used in the open source development environment, the final
reports, and individual questionnaires. A teamwork quality
model and an agile maturity model were also used to analyze
the data and compare the performance of the teams (we remark
that these analyses were not used for the final individual
grading of the students).

We found that the students were engaged by the agile ap-
proach, improved their cooperation attitude thanks to team
build activities. Notably, all teams were able to complete their
projects working during the course and delivering the final
product just after the end of the lectures.

Students were not happy to measure themselves, being afraid
that the use of tracking tools could be used to grade their
work. Instead, they felt that their ability to work in a team
was greatly improved after this experience.

We are now preparing the next round of this experiments, in
which we would like to extend the set of tools, for instance
in order to support retrospectives with improved tools [6].
We also plan to suggest the usage of tools for automating
integration and delivering following a DevOps approach, to
be applied applied to a product to be deployed in the cloud.

Another approach we are considering consists of includ-
ing a Large Language Model like OpenAI’s GPT as team
member. In combination with specification animation [22]
and automated testing [1], these offer a powerful method of
requirement analysis. Our approach should help students to
understand the reasons for selecting a specific agile practice,
and to explore the various roles of Product Owner, Scrum
Master, or developer in a different, possibly more effective
way using a low code approach.

Acknowledgments. We thank CINI and ISTC-CNR for their
support. We also ack the support of CN-HPC under PNRR.

REFERENCES

[1] A. Bacchelli, P. Ciancarini, and D. Rossi. On the
Effectiveness of Manual and Automatic Unit Test Gen-
eration. In Proc. 3rd Int. Conf. on Software Engineering
Advances, pages 252–257, Sliema, Malta, 2008. IEEE
CS.

[2] R. B. Bass, B. Pejcinovic, and J. Grant. Applying Scrum
project management in ECE curriculum. In Proc. IEEE
Frontiers in Education Conference (FIE), pages 1–5.
IEEE, 2016.

[3] K. Beck. Extreme Programming explained: embrace
change. Addison-Wesley, 2000.



[4] P. Chetankumar and M. Ramachandran. Agile maturity
model (amm): A software process improvement frame-
work for agile software development practices. Interna-
tional Journal of Software Engineering, 2, 01 2009.

[5] P. Ciancarini and M. Missiroli. Training Students as
Agile Developers: Team and Role Building Games. In
G. J. et al., editor, Proc. 17th KES Int. Conf. on Agents
and Multi-Agent Systems AMSTA, volume 354 of Smart
Innovation, Systems and Technologies, pages 289–300.
Springer, 2023.

[6] P. Ciancarini and M. Missiroli. Education to Agile:
fostering team awareness with Essence. In A. C. et al.,
editor, Proc. 2nd Int. Workshop on Frontiers in Software
Engineering Education FISEE, volume to appear of
LNCS/LASER, page 15. Springer, 2023.

[7] P. Ciancarini, M. Missiroli, F. Poggi, and D. Russo.
An open source environment for an agile development
model. In IFIP International Conference on Open Source
Systems, pages 148–162. Springer, 2020.

[8] P. Ciancarini, M. Missiroli, and S. Zani. Empirical
evaluation of agile teamwork. In A. Paiva, A. Cavalli,
P. V. Martins, and R. Pérez-Castillo, editors, Proc. 14th
Int. Conf. on Quality of Information and Communications
Technology QUATIC, volume 1439 of Communications
in Computer and Information Science, pages 141–155.
Springer, 2021.

[9] V. Devedžić and S. Milenkovic. Teaching agile software
development: A case study. IEEE Transactions on
Education, 54(2):273–278, 2010.

[10] L. Gren, A. Goldman, and C. Jacobsson. Agile ways
of working: a team maturity perspective. Journal of
Software: Evolution and Process, 32(6):e2244, 2020.

[11] M. Hoegl and H. G. Gemuenden. Teamwork quality and
the success of innovative projects: A theoretical concept
and empirical evidence. Organization science, 12(4):
435–449, 2001.

[12] I. Jacobson, J. Sutherland, B. Kerr, and B. Buhnova.
Better Scrum through Essence. Software: Practice and
Experience, 52(6):1531–1540, 2022.

[13] K.-K. Kemell et al. The Essence Theory of Soft-
ware Engineering – Large-Scale Classroom Experiences
from 450+ Software Engineering BSc Students. In
M. Kuhrmann et al., editors, Product-Focused Software
Process Improvement, volume 11271 of LNPSE, pages
123–138. Springer, 2018.

[14] M. Kropp, A. Meier, M. Mateescu, and C. Zahn. Teach-
ing and learning agile collaboration. In 2014 IEEE
27th conference on software engineering education and
training (CSEE&T), pages 139–148. IEEE, 2014.

[15] L. Layman, T. Cornwell, and L. Williams. Personality
types, learning styles, and an agile approach to software
engineering education. In Proc. 37th SIGCSE Technical
Symposium on Computer science education, pages 428–
432, 2006.

[16] Y. Lindsjørn, D. I. Sjøberg, T. Dingsøyr, G. R. Bergersen,
and T. Dybå. Teamwork quality and project success in
software development: A survey of agile development
teams. Journal of Systems and Software, 122:274–286,
2016.

[17] A. Meier, M. Kropp, and G. Perellano. Experience report
of teaching agile collaboration and values: agile software
development in large student teams. In Proc. 29th Int.
Conf. on Software Engineering Education and Training
(CSEET), pages 76–80. IEEE, 2016.

[18] OMG. Essence – Kernel and Language for Software En-
gineering Methods. Version 1.2. Technical Report 18-10-
02, Object Management Group, Milford, Massachusetts,
2018. URL https://www.omg.org/spec/Essence/1.2/PDF.

[19] D. E. Rush and A. J. Connolly. An agile framework
for teaching with Scrum in the IT project management
classroom. Journal of Information Systems Education,
31(3):196–207, 2020.

[20] M. Schubanz and C. Lewerentz. What matters to
students-a rationale management case study in agile
software development. In Proc. SEUH Software Engi-
neering im Unterricht der Hochschulen, volume 2531 of
CEUR Workshops Proceedings, pages 17–26, Innsbruck,
Austria, 2020.

[21] K. Schwaber. Scrum development process. In Proc.
OOPSLA Workshop on Business Object Design and
Implementation, pages 117–134, Austin, Texas, 1995.
Springer.

[22] L. Sterling, P. Ciancarini, and T. Turnidge. On the
Animation of Not Executable Specifications by Prolog.
Int. Journal of Software Engineering and Knowledge
Engineering, 6(1):63–88, 1996.

[23] S. Teel, D. Schweitzer, and S. Fulton. Teaching under-
graduate software engineering using open source devel-
opment tools. Issues in Informing Science and Informa-
tion Technology, 9:63–73, 2012.

[24] A. Yin, S. Figueiredo, and M. M. da Silva. Scrum
maturity model. Proceedings of the ICSEA, pages 20–29,
2011.

https://www.omg.org/spec/Essence/1.2/PDF

	Introduction
	Related works
	Method
	Product specifications
	Process description
	Preparatory phase
	Execution phase
	Final phase

	The agile open source environment
	CAS Server
	CAS-Logger and CAS-Dashboard

	Data gathering and elaboration
	Data obtained from the CAS environment
	Data obtained from the final reports
	Data obtained from individual questionnaires

	Teamwork quality model
	Agile maturity model

	Results
	Students' choices
	IDE and logger
	Programming languages

	Agile practices
	Retrospectives
	Teamwork quality and maturity models

	Discussion
	Conclusions and future work

