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Abstract

Situated Visualizations (SV) and reality-based informa-
tion retrieval systems, enhanced by Mixed Reality (MR) and
Augmented Reality (AR), enable the overlay of digital in-
formation onto real-world objects, providing context-aware
content through computer vision. Despite their potential,
these systems face significant challenges in scalability and
adaptability, particularly for domains like wine recogni-
tion, where diverse label designs, frequent updates, and
limited historical databases complicate automated analy-
sis. SOLLAMA (SOmmeLier LlAMA) is a novel wine recog-
nition framework designed to address the scalability and
adaptability challenges of AR systems in recognizing di-
verse wine labels. Leveraging Multimodal Large Language
Models (MLLMs), SOLLAMA integrates visual and textual
cues for accurate label interpretation, bypassing the need
for extensive image datasets and traditional OCR methods.
Built on the Augmented Wine Recognition (AWR) system, it
replaces the OCR module with LLAMA 3.2 for advanced
text recognition and contextual understanding. Key bene-
fits include scalability across diverse designs and simpli-
fied, server-free deployment. Experimental validation on
a dataset of wine labels from Italy’s Emilia–Romagna re-
gion highlights the system’s effectiveness and its potential
to transform wine recognition in AR-based applications.

*Corresponding author: pasquale.cascarano2@unibo.it

1. Introduction

Situated visualizations (SV) and reality-based informa-
tion retrieval systems are designed to overlay context-
specific digital information onto real-world entities, such
as food, people, buildings, and photographs [4, 29, 44].
In SV, digital data linked to physical objects are collected
and collocated to serve as anchors [12]. The increas-
ing accessibility of Mixed Reality (MR) and Augmented
Reality (AR) technologies has expanded the viability of
SV across various domains, providing users with perti-
nent information about physical objects and guiding them
through specific processes, such as learning or decision-
making [16, 17, 23, 33, 48].

These systems are based on computer vision techniques,
which extract relevant information to be dynamically used
within an AR environment thus creating responsive expe-
riences that adapt in real-time to the identified data, pro-
viding either the exact information or semantically related
contents [4, 23, 31]. This allows for the superimposition of
contextually relevant digital content onto the physical en-
vironment, enhancing user interaction and understanding.
Such paradigms can be applied in a variety of contexts, from
industrial settings to education [43, 45]. This integration is
commonly applied using visual anchor targets, such as 2D
images and 3D models, and also document targets (i.e., pic-
tures containing structured text) [8, 23]. In particular, in
document recognition, some works have focused on scan-
ning documents to display augmented information related



to their content, including metadata extraction and contex-
tual overlays [40, 46, 59].

Food labels can be considered as a specialized form of
a document, as they contain structured information such
as nutritional facts, ingredients, and origin details [37]. In
the food and beverage sector, numerous initiatives have fo-
cused on scanning packages to display augmented informa-
tion related to their contents, including nutritional details
and reviews [34, 39, 47]. An interesting field of applica-
tion amounts to wine recognition, where applications like
Yuka [57] and Vivino [51] exemplify this trend, offering
users insights into product quality and composition. These
applications typically rely on marker-based or markerless
computer vision techniques for object detection, recogni-
tion, and tracking, which often demand substantial compu-
tational resources and extensive datasets of reference im-
ages [42]. However, these methods may struggle to scale
effectively with long-tail products, such as wines, due to
the vast diversity and frequent updates in wine labels [18]
which can be also impossible to cover, considering the lim-
ited availability of images for older vintages. Considering
these limits for wine recognition, and the textual analy-
sis approach proposed by [46], authors of [4] introduced
the Augmented Wine Recognition (AWR) system leverag-
ing a deep learning-based OCR and domain-specific knowl-
edge to identify wine types through the textual informa-
tion on bottle back labels. They address the limitations
of traditional marker-based or computer vision approaches,
particularly in handling the long-tail distribution of wine
products, where labels may vary or lack comprehensive
databases. Leveraging European regulations on wine la-
bel design, the AWR system employs a custom tree data
structure and hierarchical search algorithm to match tex-
tual features efficiently. The tests on more than 2000 wine
labels, from Italy’s Emilia–Romagna region, demonstrated
high recognition accuracy and a fast inference time.

Despite these interesting approaches, such methods may
struggle to scale effectively with diverse and evolving docu-
ment formats due to the wide variety and frequent document
layouts and design updates [3]. Indeed, the complex vi-
sual features of wine labels—such as intricate backgrounds,
diverse fonts, and distortions from the bottles’ curved sur-
faces—can inhibit OCR accuracy. Even with accurate text
recognition, automatically discerning which words are per-
tinent for identifying a specific wine can be time-consuming
and may not align with the real-time requirements of SV
[4]. Consequently, implementing an effective system ne-
cessitates the integration of methods, algorithms, and tech-
nologies to ensure both detection efficacy and efficiency.

To address these challenges, we propose leveraging Mul-
timodal Large Language Models (MLLMs) for wine recog-
nition through the automatic interpretation of the text, re-
ported in the image of the label itself. MLLMs are designed

to process and integrate multiple data modalities, such as
text and images, enabling them to comprehend and gener-
ate content that encompasses both visual and textual infor-
mation [56]. By employing MLLMs, we can develop a sys-
tem that interprets the visual and textual elements of wine
labels holistically, facilitating accurate wine identification
without relying solely on extensive image databases or tra-
ditional OCR methods. In practice, we built upon the AWR
system, changing the OCR module with an open-source
MLLM (in our case LLAMA 3.2 [13]) towards completely
automatizing the textual recognition from pictures through
prompted instructions. The system is referred to as SOm-
meLier LlAMA (SOLLAMA).

This approach offers several advantages. (i) Scalabil-
ity. MLLMs can generalize across a wide array of wine
labels, including those not present in existing databases, by
understanding visual and textual cues. (ii) Reduced Com-
putational Requirements. By processing images and text
concurrently, MLLMs can operate efficiently without the
need for high computational time. (iii) Server-Free Imple-
mentation. MLLMs can be deployed on-device, enabling
server-free operations that enhance user privacy and reduce
latency. (iv) Simplified Logic. The integrated understand-
ing of visual and textual information by MLLMs minimizes
the need for complex processing pipelines, streamlining the
system architecture.

The rest of this paper is organized as follows. In Sec-
tion 2, we review the related work on food and beverage
product identification, particularly focusing on the meth-
ods used in AR applications for label recognition and prod-
uct identification, including both commercial and academic
solutions. Section 3 introduces the domain-specific wine
background, detailing the regulatory structure and informa-
tion that can be leveraged for wine identification. Section 4
describes the proposed SOLLAMA system, including its
AR interface, the MLLM module, and the hierarchical tex-
tual database and search algorithm built upon its textual
recognition. In Section 5, we evaluate the proposed system,
providing an in-depth analysis of its efficacy and efficiency
in recognizing wine labels. Finally, in Section 6, we dis-
cuss the limitations, propose potential improvements, and
outline directions for future work.

2. Related work
We here review those works that focused on providing

systems to recognize information for SV in food industry.
Then, we review the most recent works adopting LLMs and
MLLMs in document analysis and text extraction.

2.1. Product Recognition for Situated Visualization

Food and beverage product identification for SV is often
performed with bar codes or QR codes. Many AR appli-
cations exploit image detection and recognition paradigms,



which may also be based on codes or on the recognition of a
product as it appears [35,41,42,47]. Identifying and exploit-
ing visual cues in food product pictures is an approach that
appeared in various research contributions [15, 19, 26, 60].
In this scenario, some works, from both industrial and aca-
demic contexts, focused on wine label recognition and its
application in the AR realm [4,5,20,24,28,38,49]. Regard-
ing commercial solutions, WineEngine is an online wine
label recognition service [49] which exploits a combina-
tion of OCRs and image-retrieval-based approaches using
the wine bottle front label. This approach requires adding
reference label images to the considered database and does
not provide an AR interface. Another interesting system to
recognize wine bottles is Living Wine Labels [28]. Finally,
Vivino is the most downloaded app with a community com-
prising 20 million users around the globe [38, 51] and pro-
vides features such as wine exploration, evaluations, and a
wine bottle front label recognizing service. Vivino does not
provide an AR interface and implements an image retrieval
approach based on the Vuforia Cloud Recognition service.

Considering now academic contributions, mostly have
followed image retrieval-based approaches [2,5,24]. In [24]
the authors proposed a CNN-SIFT framework for wine label
retrieval, where a trained CNN model recognizes the wine
producer to narrow the search range, while a SIFT descrip-
tor empowered with RANSAC and TF-IDF mechanisms
matches the final sub-brand. In [2], the authors presented
an AR system running on a Microsoft HoloLens, making
use of the Vuforia SDK to recognize markers attached to
wine bottles and to display information concerning those
bottles [52]. It is also possible to find other approaches
in literature that concentrate on recognition sub-problems.
All of the aforementioned academic contributions rely on
image-retrieval-based approaches, and so present the main
limit of requiring an extensive image database, which may
be very difficult if not impossible considering old, out-of-
production, or new wine types (i.e., long-tail samples). Dif-
ferently, [4] implemented an OCR-based solution to read
serial numbers from wine labels to provide counterfeit pre-
vention and brand protection. However, this would be re-
quired to have access to all the correspondences between
serial numbers and related bottle wine types. The latter,
paved the way for a textual analysis of wine labels (and in
general product labels) exploiting domain knowledge cues
to recognize the product, without relying on any image re-
trieval approach. This also put the basis for the exploitation
of MLLMs to automatize this process, possibly removing
any kind of implementation logic.

2.2. Multi-Modal Large Language Model Docu-
ment Analysis

LLMs have demonstrated remarkable proficiency in un-
derstanding and generating text, leading to their applica-

tion in various Information Extraction (IE) tasks. [58] pro-
vided a comprehensive survey on the integration of LLMs
into IE tasks, emphasizing their effectiveness in extracting
structured information from unstructured text. Considering
document-level relation extraction, [55] introduced a frame-
work that utilizes LLMs to identify relationships between
entities across entire documents. However, the development
of MLLMs has enabled the processing of diverse data types,
enhancing document understanding by integrating textual
and visual information. On this line, [25] analyzed what
MLLMs could nowadays achieve in vision-language tasks,
analyzing their architectures and training techniques. In this
domain, authors of [53], introduced a layout-aware gener-
ative language model, that exemplifies the application of
MLLMs in document understanding. DocLLM effectively
handles tasks such as information extraction and document
classification by incorporating text and visual layout infor-
mation. On a similar line, [27] developed an OCR-free
large multimodal approach designed for document under-
standing. It integrates text and visual features only, achiev-
ing notable improvements across various benchmarks re-
lated to scene text-centric and document-oriented tasks. Fi-
nally, in the retail and food domain, authors of [21] replace
a complex multi-step pipeline involving image preprocess-
ing, object detection, OCR, and supervised object classifi-
cation with diverse MLLM, evaluating their performance in
production-level visual-question answering and OCR tasks
using the Retail-786k dataset [22], which comprises ap-
proximately 786,000 high-resolution product images from
European retailers. Findings revealed that performance var-
ied significantly depending on the task: most models ac-
curately answered questions regarding product brand and
price but struggled with fine-grained classification tasks,
such as correctly identifying specific product names or de-
tecting discounts. These results suggest that further inves-
tigation on the visual-text factors influencing those must be
performed. In any case, all the text extracted and analyzed
by these models can be reframed to enable their automatic
localization within documents, providing cues for a struc-
tured search in classical algorithms [36].

References IR AR AReT OCR TDO TLM
[49] ✓ ✗ ✓ ✓ ✗ ✗
[28] ✓ ✓ ✗ ✗ ✗ ✗
[51] ✓ ✗ ✗ ✗ ✗ ✗

[14, 20, 24, 32, 54] ✓ ✗ ✗ ✗ ✗ ✗
[2] ✓ ✓ ✓ ✗ ✗ ✗
[5] ✗ ✗ ✓ ✓ ✓ ✗
[4] ✗ ✓ ✓ ✓ ✓ ✗

SOLLAMA ✗ ✓ ✓ ✗ ✓ ✓

Table 1. Comparison between the characteristics of the different
wine recognition systems and SOLLAMA.

Differently from the cited related works in wine recog-



nition, SOLLAMA aims to directly integrate multimodal
LLMs to simplify the implementation logic for the recogni-
tion phase in situated visualization, to provide a novel and
more efficient approach to recognize the discriminative in-
formation to distinguish a wine bottle type from another.

Table 1 compares the characteristics of our solution
against existing ones, where IR stands for Image Retrieval,
AR for Augmented Reality, AReT for Almost Real-Time,
OCR indicates the usage of an OCR, TDO for Textual
Database only, and TLM indicates that is exploiting an
LLM fo textual extraction.

3. Wine Domain Knowledge
A wine bottle typically features two labels: a front la-

bel and a back label. The front label is primarily used for
brand communication, while the back label provides de-
tailed information about the wine, formatted in compliance
with the regulations of its country of origin [7]. In some
cases, bottles may have a single label that consolidates all
required details in a compact format. For clarity, we will
use the term “label” to refer specifically to those contain-
ing information necessary for distinguishing wine types, as
mandated by Italian regulations.

Recent work has provided a valuable description of the
historical development of wine policies in Europe inside the
Common Market Organization (CMO) [1]. According to
Italian regulations, specific information (e.g., wine appella-
tion, winery) must appear on a wine bottle in the same field
of view (i.e., a consumer should not have to turn a bottle to
read them all). Italian labels report different information,
some mandatory and some not [6, 11, 30, 50].

The wine label contains various pieces of information
essential for identification and classification, listed as fol-
lows. (i) Name: The wine name, typically displayed at the
label’s top-center. (ii) Type: Specifies whether the wine is
varietal, generic, or appellation-based. Appellation wines
refer to production within specific geographical areas. (iii)
Appellation: Appellation wines are categorized as either
Protected Geographical Indication (PGI/IGP) or Protected
Designation of Origin (PDO/DOP). PDO wines (e.g., DOC,
DOCG) require all production phases to occur in the desig-
nated region, while PGI wines (e.g., IGT) allow at least one
phase outside the region. These classifications were formal-
ized after the 2008 CMO reform. (iv) Appellation Value:
This is the unique “proper name” of the wine type within
its class (e.g., Pignoletto for DOC wines) and is displayed
alongside the appellation. (v) Winemaker/Winery: The
label must include the name of the winery where the wine
is bottled, which may produce multiple labels or brands.
(vi) Region of Origin: While not mandatory, it can of-
ten be inferred from the appellation value for appellation
wines or identified through the winery. (vii) Effervescence:
Specifies whether the wine is still, sparkling, or spumante.

If not indicated, the wine is assumed to be still. (viii)
Sweetness: Terms vary depending on effervescence, such
as Secco, Brut, or Dolce, with sweetness mandatory only
for spumante wines. (ix) Color: Identified as red, white, or
rosé, possibly using synonyms.

The information introduced to this point is valuable to
uniquely identify wine types, which are also the wine de-
scriptors adopted in our system to discriminate among them.
These amounts to those labels that must be extracted and
recognized automatically by the considered MLLM.

4. SOLLAMA system
The proposed SOLLAMA system (see Fig. 2) includes

two main components: (a) a client AR interface running on
a mobile device, used to take pictures of the wine label and
present AR content after wine type identification, and (b)
an algoritmic pipeline, which employs an MLLM to retrieve
the relevant text within the image sent by the mobile device,
then fed to the hierarchical search algorithm implemented
in [4], providing the best wine-type candidates.

4.1. Augmented Reality interface

(a) (b) (c)

Figure 1. AR interface: (a)-(b) Wrong and Correct suggestions,
(c) Correct Identification confirmation.

Fig. 1 shows the main processes and features of the SOL-
LAMA system, depicting four different views of the AR
interface. The client side of SOLLAMA has been imple-
mented adopting an AR approach for Android-based smart-
phones (developed with Unity and the Vuforia SDK). Once
activated, the AR interface starts to continuously scan what
is framed by the device camera, collecting more and more
frames. When a certain number of frames are collected, the
system to verify whether the camera is pointing at a known
label. During this recognition process, a spinning loading
icon appears on the screen’s bottom left corner. Once a la-
bel is recognized, the interface shows the wine name, ap-
pellation, region, and region image (if available) related to



Figure 2. The SOLLAMA is an MLLM-driven AR system designed for wine label recognition and information retrieval. The process
begins with a user capturing an image of a wine label using a smartphone. This image is processed through an open-source MLLM, guided
by a domain knowledge prompt to extract structured wine information. The extracted data is then processed by a custom wine algorithm
search, which interfaces with a hierarchical database to identify relevant wine attributes efficiently. Finally, the system provides augmented
situated visualizations, offering detailed product insights and recommendations.

the first query result. The interface also lists other possible
candidates on its right panel. If the right answer is present
in this list, a user can select it. In this case, the interface
opens a dialogue box asking the user to save the selected
result. In case the back-end recognition service is not able
to match the targeted wine because the related entry is not
included in the textual DB, an alert is displayed.

4.2. MLMM algorithmic pipeline

The system back-end components include an algorith-
mic pipeline employing (i) text extracted by a considered
MLLM on a wine label image and (ii) a custom hierarchical
search algorithm that skims a hierarchical textual DB based
on the previously extracted words, providing the best can-
didate wine types. Those are respectively detailed in Sec-
tion 4.2.1 and Section 4.2.2.

4.2.1 Textual Extraction module

The proposed system integrates a Textual Extraction Mod-
ule which leverages a MLLM to extract structured infor-
mation from wine labels by integrating visual and textual
processing with domain-specific knowledge. As depicted in
Fig. 2, the workflow begins with the user capturing an im-
age of the wine label, denoted as I , using their smartphone.
This image is processed by the MLLM, which combines
visual features extracted via a vision encoder EV and tex-
tual features extracted via an OCR-based text encoder ET .
The extracted embeddings are concatenated to form a mul-
timodal representation, z = Concat(EV (I), ET (I)), which
serves as input to the MLLM.

To contextualize the extraction process, a domain-
specific prompt, P , is provided, detailing key attributes of

interest such as wine region, vintage, and alcohol content.
In our case P = “Report only the label text in the image.
Also read the parts that are blurry, and barely visible. Re-
ply only with the text you find without special characters
and on a single line without punctuation.” We here adopted
such a very general prompt, to preliminary explore the capa-
bilities of our MLLM to act as an OCR on images of wine
labels. However, we constrain it to retrieve only classical
text without special characters on a single line, to match the
structure of the adopted OCR in [4].

Then, the MLLM exploits the cross-attention mechanism
to refine the multimodal embeddings, yielding a prompt-
conditioned representation. This aims at maximizing the
MLLM parameters, θMLLM , to maximize the accuracy of
attribute recognition.

This representation is decoded to generate structured
data, S, containing a list of extracted attributes.

The extracted information is then passed to a custom
search algorithm, which matches the data against a curated
wine database to provide additional insights, such as re-
views and geographic origins. Finally, the results are vi-
sualized through an augmented interface, enabling the user
to explore the wine’s contextual and sensory profile interac-
tively.

4.2.2 Wine database and Search Algorithm

We considered a subset of the wine database produced in
[4], which contains more than 2000 wines from the Emilia-
Romagna region. Given the hierarchical nature of the at-
tributes for wine discrimination (Section3), we adapted that
classification to fit a hierarchical tree structure as in [4].
This transformation involves the definition of the level of



Figure 3. Frames from two wine bottles. Left three images are from ID 4, and the right three images are from ID 6.

trees according to our considered features: appellation, ap-
pellation value, effervescence, sweetness, color, and wine
name. Each layer of the tree corresponds to different fea-
tures (nodes) representing possible matching values (e.g.,
DOC, DOCG for appellation). The hierarchy is constructed
by optimizing a cost function that balances pruning effi-
ciency and search complexity, ensuring features with higher
discriminatory power appear at the upper levels of the tree,
as detailed in [4].

The hierarchical database supports efficient wine identi-
fication by employing a search algorithm. The Textual Ex-
traction Module furnishes the text from wine labels, prepro-
cessed the retrieved words to crop relevant areas, and elim-
inates errors or noise. The corrected text is then matched
against the tree’s feature values using a linear search algo-
rithm with the Levenshtein distance. The algorithm then
traverses the hierarchical tree level by level, selecting the
most probable match at each node and pruning irrelevant
branches. This traversal continues until the wine type is
identified, with the remaining nodes representing potential
matches. For features with default values, the algorithm as-
sumes these defaults if no relevant words are detected. The
hierarchical structure ensures scalability and adaptability to
new data, while the search algorithm effectively compen-
sates for the Textual Extraction Module inaccuracies.

5. Experiments and results

5.1. Dataset

For this study, we adopted a high-variance subset of 10
wine bottles, as introduced [4], selected specifically to eval-
uate the system’s robustness under challenging conditions
(e.g., occlusions, reflections, blur). This dataset includes
wines with diverse label designs, font styles, and structural
variations. The wine bottle labels considered amount to
(Wine ID 1) Colli di Faenza Rosso Riserva Secco, (Wine
ID 2) Colli di Rimini Biancame Secco, (Wine ID 3) Colli

di Rimini Rebola Secco, (Wine ID 4) Colli di Imola Rosso
Riserva Secco, (Wine ID 5) Emilia Lambrusco Frizzante
Dolce, (Wine ID 6) Emilia Lambrusco Frizzante Secco,
(Wine ID 7) Emilia Malvasia Frizzante Secco, (Wine ID
8) Forlı̀ Sangiovese Secco, (Wine ID 9) Lambrusco Di Sor-
bara Rosso Frizzante Secco 1, (Wine ID 10) Lambrusco Di
Sorbara Rosso Frizzante Secco 2.

We expanded the analysis from static images to
keyframes extracted from videos to assess the system’s
capability to handle realistic scenarios. Each video was
recorded while rotating the camera around the bottle from
left to right, capturing the label from various angles and un-
der varying lighting conditions. From each video, we ex-
tracted multiple keyframes, simulating real-world usability
and helping evaluate the system’s performance in mitigating
OCR detection errors caused by factors such as reflections,
distortions due to the bottle’s curvature, or suboptimal envi-
ronmental lighting. This methodology was designed to test
the capability of the adopted MLLM pipeline when acting
as a text recognition system, ensuring reliable recognition
even in non-ideal conditions. Examples of key frames ex-
tracted by those videos for wine bottles with IDs 4 and 6 are
visually reported in Figure 3.

From each of these samples, we extracted the ground
truth words (wine attributes) written on the label, which
amounts to the features we must match to recognize and
discriminate a particular type of wine (see Section 3). A vi-
sual example is reported in Figure 4. This particular setup
aims at creating a complex experimental setting: our con-
sidered MLLM model should match not only the attributes
required to recognize a wine type but all the text reported in
the label.

5.2. Experimental Setting

We employed, as our target MLLM, Llama 3.2, a foun-
dational language and vision model, designed to support a
large variety of AI tasks [9]. We selected this model not



Table 2. Comparison of Llama 3.2 and the legacy OCR on data for Matches, Missing, and Incorrect metrics. Values are reported as mean
(standard deviation) calculated over frames and wine IDs. Bold values indicate superior performance per metric for each Wine ID.

Wine ID Matches Missing Incorrect

Llama 3.2 OCR Llama 3.2 OCR Llama 3.2 OCR

1 7.57 (±2.15) 9.86 (±1.07) 3.43 (±2.15) 1.14 (±1.07) 58.71 (±26.31) 103.29 (±9.52)
2 6.29 (±2.63) 5.14 (±2.04) 3.71 (±2.63) 4.86 (±2.04) 16.86 (±12.25) 35.71 (±15.70)
3 7.86 (±2.54) 10.00 (±2.71) 5.14 (±2.54) 3.00 (±2.71) 12.29 (±6.90) 24.86 (±1.95)
4 8.56 (±1.88) 10.67 (±2.35) 5.44 (±1.88) 3.33 (±2.35) 39.11 (±5.60) 52.22 (±3.15)
5 6.43 (±1.13) 10.00 (±1.73) 5.57 (±1.13) 2.00 (±1.73) 24.86 (±2.67) 29.29 (±0.95)
6 6.71 (±2.43) 4.71 (±2.29) 3.29 (±2.43) 5.29 (±2.29) 21.86 (±5.73) 33.71 (±7.54)
7 4.86 (±1.57) 7.14 (±2.85) 5.14 (±1.57) 2.86 (±2.85) 22.00 (±11.39) 46.00 (±5.07)
8 8.86 (±1.95) 7.57 (±1.13) 3.14 (±1.95) 4.43 (±1.13) 46.14 (±24.12) 75.29 (±3.90)
9 8.00 (±1.63) 5.14 (±1.46) 4.00 (±1.63) 6.86 (±1.46) 24.57 (±6.55) 57.71 (±4.31)

10 7.71 (±2.56) 6.00 (±1.91) 4.29 (±2.56) 6.00 (±1.91) 36.00 (±8.39) 52.29 (±7.61)

Figure 4. Ground truth example labeled for Wine Bottle with ID
9.

only for its multimodal understanding but also because in
its training pipeline, data optimized for document under-
standing (OCR-oriented) were included [9]. We adopted
the 3B parameters version provided through the Ollama in-
terface 1. Then, to compare its performance concerning the
legacy OCR module already included in the system intro-
duced in [4] which amounts to a state-of-the-art OCR [10].
For each method, we considered all the possible extracted
words.

Then, to have a fair comparison, we applied a trivial reg-
ular expression to post-process all the text extracted by both
the MLLM and the classical OCR to filter out any form of
punctuation. The extracted words were matched against a
predefined list of ground truth words within our dataset to
assess system performance. Quantitatively, we then calcu-
late the exact match accuracy (number of correct words
on the retrieved ones), precision (number of correct words
in the retrieved ones concerning the total), and recall (num-
ber of missing words in the retrieved ones concerning the
total). These are referred as respectively Matches, Missing,

1https://ollama.com/library/llama3.2

and Incorrect.
This experimental setting ensures that the generated

word list aligns with the predefined ground truth words,
enabling robust evaluation and analysis of system perfor-
mance. All the experiments were conducted on a worksta-
tion, equipped with an Intel Xeon Gold CPU operating at
3.80 GHz, 96 GB of RAM, and an NVIDIA Quadro RTX
5000 GPU, with 16 GB of VRAM.

5.3. Results

Table 2 report the average performance of applying re-
spectively the adopted Llama model and legacy OCR, over
frames and different wine labels.

This comparative analysis between Llama 3.2 and tradi-
tional OCR systems on data reveals distinct strengths and
limitations in text extraction tasks. In terms of Matches,
Llama 3.2 outperforms OCR in 5 out of 10 Wine IDs, indi-
cating an equal rate of correct text extractions in these in-
stances. For example, Wine ID 2 shows Llama 3.2 achiev-
ing 6.29 (±2.63) matches compared to OCR’s 5.14 (±2.04).
However, OCR surpasses Llama 3.2 in the remaining Wine
IDs, such as Wine ID 1, where OCR records 9.86 (±1.07)
matches against Llama 3.2’s 7.57 (±2.15).

Regarding the Missing metric, Llama 3.2 demonstrates
superior performance in 5 out of 10 Wine IDs, indicat-
ing fewer missed word extractions. For instance, Wine ID
2 shows Llama 3.2 with 3.71 (±2.63) missing extractions,
while OCR has 4.86 (±2.04). Conversely, OCR exhibits bet-
ter results in the remaining 5 Wine IDs, such as Wine ID 1,
where it records 1.14 (±1.07) missing extractions compared
to Llama 3.2’s 3.43 (±2.15).

In the Incorrect metric, Llama 3.2 consistently outper-
forms OCR across all Wine IDs, indicating a lower rate
of erroneous extractions. For example, Wine ID 1 shows
Llama 3.2 with 58.71 (±26.31) incorrect extractions, sig-
nificantly lower than OCR’s 103.29 (±9.52). These find-
ings indicate that while classical OCR has similar perfor-

https://ollama.com/library/llama3.2


mance for text extraction, Llama 3.2 may offer advantages
in complex scenarios requiring a lower false positive rate.
This is exactly the use case we here took into consideration,
since to recognize a wine type, we have to match only the
words needed to perform an algorithmic search, that other-
wise would require a more complex filtering logic, as the
one implemented in [4]. Despite this, Llama 3.2 exhibit
a standard deviation higher than the OCR one, highlight a
lack of robustness. This is likely due to the fact that the
MLLM was subjected to frames where the textual informa-
tion on the wine label was only partially visible—a scenario
that deep learning-based OCR systems are designed to han-
dle but can still struggle with under certain conditions.

To further analyze the performance of Llama 3.2 and tra-
ditional OCR systems, we present two bar plots in Figure 5
comparing the Matches (%) and Incorrect (%) metrics rela-
tive to detected words across various wine IDs.

(a) Matches (%)

(b) Incorrect (%)

Figure 5. Comparison of Matches, Incorrect in percentage to de-
tected words

Figure 5a compares the percentages of Matches over
all the detected words for both methods. It is evident that

Llama 3.2 consistently achieves a higher ratio of correct
detections relative to detected words across the majority
of IDs. Figure 5b instead reports the percentages of In-
correct words over all the detected ones. Across all wine
IDs, Llama 3.2 consistently reports a lower percentage of
incorrect extractions compared to OCR. For instance, in
Wine ID 4, the Incorrect (%) for Llama 3.2 is considerably
lower than that of OCR, indicating better alignment with the
ground truth.

These results further confirms the initial metrics: despite
having similar text extraction performances, Llama 3.2 ex-
hibit a lower false positive rate.

6. Conclusions

We here introduced the SOLLAMA system, a MLLM-
driven situated augmented reality visualization system. It
demonstrates the potential of MLLMs to simplify system
logic deployment when implementing multimodal infor-
mation retrieval systems, here contextualized for wine la-
bel recognition. By leveraging Llama 3.2, SOLLAMA ef-
fectively addresses challenges associated with traditional
OCR-based methods, such as scalability, computational ef-
ficiency, and adaptability to diverse wine label designs. Ex-
perimental evaluations validate the superior performance of
Llama 3.2 in handling complex scenarios providing a high
recognition accuracy and reduced false positive rates.

SOLLAMA’s innovative approach bridges the gap be-
tween AR interfaces and real-world product recognition, of-
fering practical applications for the food and beverage in-
dustry and beyond.

Future research will explore a more varied mixture of
dataset in the wine domain, along with the performance
comparison inclusion of other OCRs and MLLMs. A the
same time, we will set a robustness analysis to address the
challenges posed by varying text visibility, lighting condi-
tions, reflections, and contrast commonly encountered with
wine labels on bottles, comparing OCR and LLMs. More-
over, we will extending SOLLAMA to other domains re-
quiring complex document analysis, integrating real-time
user feedback mechanisms, and improving the system’s ro-
bustness to extreme environmental variations. At the same
time, we will focus on improving our system prompt, to di-
rectly identify the attributes that we need in a pre-defined
template that could be directly used for optimized search.

References
[1] Julian M Alston and Davide Gaeta. Reflections on the po-

litical economy of european wine appellations. Italian Eco-
nomic Journal, 7(2):219–258, 2021.
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and Anita Gazivoda. The use of tesseract ocr number recog-
nition for food tracking and tracing. In 2020 24th Interna-
tional Conference on Information Technology (IT), pages 1–
4. IEEE, 2020.

[6] Camera di Commercio Molise. Guida etichettature vino.
https://www.molise.camcom.gov.it/sites/
default/files/guida_etichettatura_vino.
pdf, 2016.

[7] Steve Charters, Larry Lockshin, and Tim Unwin. Consumer
responses to wine bottle back labels. Journal of Wine Re-
search, 10(3):183–195, 1999.

[8] Sue Ding et al. Re-enchanting spaces: location-based me-
dia, participatory documentary, and augmented reality. PhD
thesis, Massachusetts Institute of Technology, 2017.

[9] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-
hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The
llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024.

[10] Easy Ocr. JadedAI. https://github.com/
JaidedAI/EasyOCR, 2021.

[11] FEDERDOC. I VINI ITALIANI A DENOMINAZIONE
D’ORIGINE 2020. https://www.federdoc.com/
new / wp - content / uploads / 2020 / 06 / vini _
italiani_denominazione_origine_2020.pdf,
2021.

[12] George W Fitzmaurice. Situated information spaces and spa-
tially aware palmtop computers. In Communications of the
ACM, volume 36, pages 39–49. ACM New York, NY, USA,
1993.

[13] Yuying Ge, Sijie Zhao, Ziyun Zeng, Yixiao Ge, Chen Li,
Xintao Wang, and Ying Shan. Making llama see and draw
with seed tokenizer. arXiv preprint arXiv:2310.01218, 2023.

[14] Timnit Gebru, Oren Hazi, and Vickey Yeh. Mobile wine
label recognition. 2022.

[15] Venugopal Gundimeda, Ratan S Murali, Rajkumar Joseph,
and NT Naresh Babu. An automated computer vision sys-
tem for extraction of retail food product metadata. In First
International Conference on Artificial Intelligence and Cog-
nitive Computing, pages 199–216. Springer, 2019.

[16] Aditya Gunturu, Shivesh Jadon, Nandi Zhang, Jarin Thun-
dathil, Wesley Willett, and Ryo Suzuki. Realitysummary:
On-demand mixed reality document enhancement using
large language models. arXiv preprint arXiv:2405.18620,
2024.

[17] Shirin Hajahmadi, Lorenzo Stacchio, Alessandro Giacché,
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